Current Transducers HTB 50 .. 400-P and HTB 50 .. 100-TP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

<table>
<thead>
<tr>
<th>Primary nominal r.m.s. current I_{PN} (A)</th>
<th>Primary current measuring range I_p (A)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>±150</td>
<td>HTB 50-P, HTB 50-TP<sup>1)</sup></td>
</tr>
<tr>
<td>100</td>
<td>±300</td>
<td>HTB 100-P, HTB 100-TP<sup>1)</sup></td>
</tr>
<tr>
<td>200</td>
<td>±500</td>
<td>HTB 200-P</td>
</tr>
<tr>
<td>300</td>
<td>±600</td>
<td>HTB 300-P</td>
</tr>
<tr>
<td>400</td>
<td>±600</td>
<td>HTB 400-P</td>
</tr>
</tbody>
</table>

- **V_C**: Supply voltage (±5%)²⁾
 - ±12 .. ±15 V
- **I_C**: Current consumption
 - ≤±15 mA
- **V_R**: R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn
 - 2.5 kV
- **R_{IS}**: Isolation resistance @ 500 VDC
 - >500 MΩ
- **V_{OUT}**: Output voltage @ $±I_{PN}$, $R_L = 10$ kΩ, $T_A = 25°C$
 - ≤±4 V
- **R_{OUT}**: Output internal resistance
 - 100 Ω
- **R_L**: Load resistance
 - ≥10 kΩ

Accuracy - Dynamic performance data

- **X**: Accuracy @ I_{PN}, $T_A = 25°C$ (without offset)
 - ±1 % of I_{PN}
- **E_L**: Linearity (0 .. ±I_{PN})
 - ±1 % of I_{PN}
- **V_{OE}**: Electrical offset voltage, $T_A = 25°C$
 - ≤±30 mV
- **V_{OH}**: Hysteresis offset voltage @ $I_p = 0$;
 - after an excursion of 3 x I_{PN}
 - ±1 % of I_{PN}
- **V_{OT}**: Thermal drift of V_{OE}
 - HTB 50-(TP)
 - <±2.0 mV/K
 - HTB 100-(TP)..400-P
 - <±1.0 mV/K
- **TCE_G**: Thermal drift (% of reading)
 - ≤±0.1 %/K
- **t_r**: Response time @ 90% of I_p
 - <3 μs
- **f**: Frequency bandwidth (-3 dB)³⁾
 - DC .. 50 kHz

General data

- **T_A**: Ambient operating temperature
 - -20 .. +80 °C
- **T_S**: Ambient storage temperature
 - -25 .. +85 °C
- **m**: Mass (TP version)
 - <30 (<36) g

2 pins of Ø2mm diameter are available on transducer for PCB soldering.

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500V
- Low power consumption
- Wide power supply: ±12V to ±15V
- Primary bus bar option for 50A and 100A version for ease of connection

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes:
- EN 50178 approval pending
- ¹⁾ TP version is equipped with a primary bus bar.
- ²⁾ Operating at ±12V ≤ $V_C < ±15V$ will reduce measuring range.
- ³⁾ Derating is needed to avoid excessive core heating at high frequency.
LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.