High standards for all ebm-papst products
Here at ebm-papst, we constantly strive to further improve our products in order to be able to offer you the best possible product for your application. Careful monitoring of the market ensures that technical innovations are reflected in the improvements of our products.

Based on the technical parameters listed below and the ambience you want our product to operate in, we here at ebm-papst can always work out the best solution for your specific application.

General performance parameters
Any deviations from the technical data and parameters described here are listed on the product-specific data sheet.

Type of protection
The type of protection is specified in the product-specific data sheets.

Insulation class
The insulation class is specified in the product-specific data sheets.

Mounting position
The mounting position is specified in the product-specific data sheets.

Condensate discharge holes
Information on the condensate discharge holes is provided in the product-specific data sheets.

Mode of operation
The mode of operation is specified in the product-specific data sheets.

Protection class
The protection class is specified in the product-specific data sheets.

Service life
The service life of ebm-papst products depends on two major factors:
- The service life of the insulation system
- The service life of the bearing system

The service life of the insulation system mainly depends on voltage level, temperature and ambient conditions, such as humidity and condensation. The service life of the bearing system depends mainly on the thermal load on the bearing.

The majority of our products use maintenance-free ball bearings for any mounting position possible. As an option, sleeve bearings can be used, which is indicated on the product-specific data sheet wherever applicable.

The service life L10 of the ball bearings can be taken as approx. 40,000 operating hours at an ambient temperature of 40 °C, yet this estimate can vary according to the actual ambient conditions.

We will gladly provide you with a lifetime calculation taking into account your specific operating conditions.

Motor protection / thermal protection
Information on motor protection and thermal protection is provided in the product-specific data sheets.

Depending on motor type and field of application, the following protective features are realised:
- Thermal overload protection (TOP), either in-circuit or external
- PTC with electronic diagnostics
- Impedance protection
- Thermal overload protection (TOP) with electronic diagnostics
- Current limitation via electronics

If an external TOP is connected, the customer has to make sure to connect a conventional trigger device for switching it off.

All fans with 1~/~ AC voltage are equipped with a TOP that is connected in the winding circuit.

Products without fitted TOP and without protection against improper use, a motor protection complying with the valid standards has to be installed.
Mechanical strain / performance parameters
All ebm-papst products are subjected to comprehensive tests complying with the normative specifications. In addition to this, the tests also reflect the vast experience and expertise of ebm-papst.

Vibration test
Vibration tests are carried out in compliance with
- Vibration test in operation according to DIN IEC 68, parts 2-4
- Vibration test at standstill according to DIN IEC 68, parts 2-4

Shock load
Shock load tests are carried out in compliance with
- Shock load according to DIN IEC 68, parts 2-27

Balancing quality
Testing the balancing quality is carried out in compliance with
- Residual imbalance according to DIN ISO 1940
- Standard balancing quality level 6 6.3
Should you require a higher balancing quality level for your specific application, please let us know and specify this when ordering your product.

Chemical-physical strain / performance parameters
Should you have questions about chemical-physical strain, please direct them to your ebm-papst contact.

Fields of application, industries and applications
Our products are used in various industries and applications:
Ventilation, air-conditioning and refrigeration technology, clean room technology, automotive and rail technology, medical and laboratory technology, electronics, computer and office technology, telecommunications, household appliances, heating, machines and plants, drive engineering.
Our products are not designed for use in the aviation and aerospace industry!

Legal and normative directives
The products described in this catalogue are designed, developed and produced in keeping with the standards in place for the relevant product and, if known, the conditions governing the relevant fields of application.

Standards
Information on standards is provided in the product-specific data sheets.

EMC
Information on EMC standards is provided in the product-specific data sheets.
Complying with the EMC standards has to be established on the final appliance, as different mounting situations can result in changed EMC properties.

Leakage current
Information on the leakage current is provided in the product-specific data sheets.
The measurement takes place according to Fig. D.1 according to IEC 60950, Fig. 4.

Approvals
In case you require a specific approval for your ebm-papst product (VDE, UL, GOST, CCC, CSA, etc.) please let us know.
Most of our products can be supplied with the relevant approval.
Information on existing approvals is provided in the product-specific data sheets.

Air performance measurements
All air performance measurements are carried out on inlet-side chamber test rigs in conformity with the requirements of DIN 24163 and ISO 5801. The fans being tested are installed on the measuring chamber at free air intake and discharge (installation type A according to DIN 24163 Part 1) and are operated at nominal voltage (for AC, also at nominal frequency) without additional attachments such as the guard grille.
As required by the standard, the air performance curves correspond to an air density of 1.2 kg/m³.
Measurement conditions for air and noise measurement

ebm-papst products are measured under the following conditions:
- Axial and centrifugal fans with direction of air flow "V", without guard grille and in the wall ring
- Backward curved centrifugal fans, free-running and with inlet nozzle
- Forward curved single and dual inlet centrifugal fans with housing

Noise measurements

All noise measurements are carried out in low-reflective test rooms with reverberant floor. Thus the ebm-papst acoustic test chambers meet the requirements of precision class 1 according to DIN EN ISO 3745. For noise measurement, the fans being tested are placed in a reverberant wall and operated at nominal voltage (for AC, also at nominal frequency) without additional attachments such as the guard grille.

Sound pressure level and sound level

All noise levels are measured in conformity to DIN 45635 and ISO 3744/3745 according to precision class 2 and specified A-weighted. When the sound pressure level \(L_p \) is measured, the microphone is on the intake side of the fan being tested, usually at a distance of 1 m on the fan axis.

To measure the sound level \(L_m \), 10 microphones are distributed over an enveloping surface on the intake side of the fan being tested (see graphic). The sound level measured can be roughly calculated from the sound pressure level by adding 7 dB.

Measurement configuration according to DIN 45635 T38:
- 10 measuring points
- \(d \geq 0 \)
- \(h = 1.5d \) to 4.5d
- Measurement area \(S = 6d^2 + 7d(h + 1.5d) \)
Adding multiple noise sources with the same level
Adding 2 noise sources with the same volume results in a level increase of approx. 3 dB. The noise characteristics of multiple identical fans can be determined in advance based on the noise values specified in the data sheet. This is shown in the diagram opposite.
Example: 8 A3G800 axial fans are on a condenser. According to the data sheet, the sound pressure level of a fan is approximately 75 dB(A). The level increase measured from the diagram is 9 dB. Thus the overall sound level of the installation can be expected to be 84 dB(A).

Adding two noise sources with different levels
The acoustic performance of two different fans can be predetermined based on the sound levels given in the data sheet. This is shown in the diagram opposite.
Example: There is an axial fan A3G800 with a sound pressure level of 75 dB(A) at the operating point and an axial fan A3G710 with 71 dB(A) in a ventilation unit. The level difference is 4 dB. The level increase can now be read in the diagram as approx. 1.5 dB. This means that the overall sound level of the unit can be expected to be 76.5 dB(A).

Inverse square law
The sound level is independent of the distance from the noise source. Conversely, the sound pressure level decreases as distance from the noise source increases. The diagram to the right shows the level decrease expressed in terms of an output measurement at a distance of 1 m from the noise source under far-field conditions.
Example: An axial fan A3G800 has a sound pressure level of 75 dB(A) at the operating point. Now, you want to measure the noise characteristics at a distance of 20 m. In the diagram to the right, you can now read a reduction of 26 dB for the 20 m distance.