Musisz być zalogowany/a
-
WróćX
-
Alkatrészek
-
-
Kategória
-
Félvezetők
- Diódák
- Tirisztorok
-
Elektromosan szigetelt modulok
- VISHAY (IR) elektromosan szigetelt modulok
- INFINEON (EUPEC) elektro-szigetelt modulok
- A Semikron elektromosan szigetelt moduljai
- POWEREX elektroszigetelt modulok
- IXYS elektromosan szigetelt modulok
- Elektro-szigetelt modulok a POSEICO-tól
- Az ABB elektromosan szigetelt moduljai
- Elektro-szigetelt modulok a TECHSEM-től
- Przejdź do podkategorii
- Híd egyenirányítók
-
Tranzisztorok
- GeneSiC tranzisztorok
- Mitsubishi SiC MOSFET modulok
- STARPOWER SiC MOSFET modulok
- ABB SiC MOSFET modulok
- IGBT modulok a MITSUBISHI-tól
- MITSUBISHI tranzisztor modulok
- MITSUBISHI MOSFET modulok
- ABB tranzisztor modulok
- IGBT modulok a POWEREX-től
- IGBT modulok – az INFINEON-tól (EUPEC)
- Szilícium-karbid félvezető elemek
- Przejdź do podkategorii
- Drivers
- Tápblokkok
- Przejdź do podkategorii
- LEM áram- és feszültségátalakítók
-
Passzív alkatrészek (kondenzátorok, ellenállások, biztosítékok, szűrők)
- Ellenállások
-
Biztosítékok
- Miniatűr biztosítékok ABC és AGC sorozatú elektronikus rendszerekhez
- Gyors működésű cső alakú biztosítékok
- Késleltetett lapkák GL/GG és AM karakterisztikával
- Ultragyors biztosítékok
- Brit és amerikai szabványos gyors működésű biztosítékok
- Gyors működésű európai szabványú biztosítékok
- Vontatási biztosítékok
- Nagyfeszültségű biztosítékok
- Przejdź do podkategorii
-
Kondenzátorok
- Kondenzátorok motorokhoz
- Elektrolit kondenzátorok
- Jégfilm kondenzátorok
- Teljesítménykondenzátorok
- Kondenzátorok egyenáramú áramkörökhöz
- Teljesítménykompenzációs kondenzátorok
- Nagyfeszültségű kondenzátorok
- Kondenzátorok indukciós fűtéshez
- Impulzuskondenzátorok
- DC LINK kondenzátorok
- Kondenzátorok AC/DC áramkörökhöz
- Przejdź do podkategorii
- Interferencia szűrők
- Szuperkondenzátorok
- Túlfeszültség elleni védelem
- TEMPEST Felfedő emissziós szűrők
- Przejdź do podkategorii
-
Relék és kontaktorok
- Relék és kontaktorok elmélete
- AC háromfázisú félvezető relék
- DC szilárdtest relék
- Szabályozók, vezérlőrendszerek és tartozékok
- Lágyindítás és irányváltó kontaktorok
- Elektromechanikus relék
- Kontaktorok
- Forgókapcsolók
-
Egyfázisú AC szilárdtest relék
- Egyfázisú váltakozó áramú szilárdtestrelék, 1. sorozat | D2425 | D2450
- Egyfázisú AC szilárdtest relék CWA és CWD sorozat
- Egyfázisú AC szilárdtest relék CMRA és CMRD sorozat
- Egyfázisú AC félvezető relék PS sorozat
- AC szilárdtest relék kettős és négyes sorozatú D24 D, TD24 Q, H12D48 D
- GN sorozatú egyfázisú szilárdtest relék
- Egyfázisú AC szilárdtest relék CKR sorozat
- Egyfázisú AC DIN sínes relék ERDA és ERAA SERIES
- Egyfázisú váltakozó áramú relék 150A áramerősséghez
- Kettős szilárdtest relék DIN sínes hűtőbordával integrálva
- Przejdź do podkategorii
- AC egyfázisú nyomtatható félvezető relék
- Interfész relék
- Przejdź do podkategorii
- Magok és egyéb induktív alkatrészek
- Radiátorok, Varisztorok, Hővédelem
- Rajongók
- Klíma, Kapcsolószekrény tartozékok, Hűtők
-
Akkumulátorok, töltők, puffer tápegységek és átalakítók
- Akkumulátorok, töltők - elméleti leírás
- Lítium-ion akkumulátorok. Egyedi akkumulátorok. Akkumulátorkezelő rendszer (BMS)
- Elemek
- Akkumulátortöltők és tartozékok
- UPS és puffer tápegységek
- Átalakítók és tartozékok napelemekhez
- Energiatárolás
- Hidrogén üzemanyagcellák
- Lítium-ion cellák
- Przejdź do podkategorii
- Automatizálás
-
Kábelek, Litz vezetékek, vezetékek, rugalmas csatlakozások
- Vezetékek
- Kábeltömszelencék és -hüvelyek
- Arcok
-
Kábelek speciális alkalmazásokhoz
- Hosszabbító és kiegyenlítő kábelek
- Hőelem kábelek
- Csatlakozó kábelek PT érzékelőkhöz
- Többeres kábelek hőm. -60°C és +1400°C között
- SILICOUL középfeszültségű kábelek
- Gyújtókábelek
- Fűtőkábelek
- Egyeres kábelek hőm. -60°C és +450°C között
- Vasúti vezetékek
- Fűtőkábelek pl
- Kábelek a védelmi ipar számára
- Przejdź do podkategorii
- pólók
-
Zsinór
- Lapos zsinór
- Kerek fonatok
- Nagyon rugalmas fonat - lapos
- Nagyon rugalmas zsinór - kerek
- Hengeres rézfonatok
- Réz hengeres fonatok és borítások
- Rugalmas földelő hevederek
- Horganyzott és rozsdamentes acélból készült hengeres fonatok
- PVC szigetelt rézfonatok - 85 fokos hőmérsékletig
- Lapos alumínium fonatok
- Csatlakozókészlet - zsinórok és csövek
- Przejdź do podkategorii
- Vontatási berendezések
- Kábelsaruk
- Szigetelt rugalmas sínek
- Többrétegű rugalmas sínek
- Kábelkezelő rendszerek
- Przejdź do podkategorii
- Az összes kategória megtekintése
-
Félvezetők
-
-
- Szállítók
-
Alkalmazások
- Bányászat, kohászat és öntöde
- Berendezések elosztó- és kapcsolószekrényekhez
- CNC gépek
- DC és AC hajtások (inverterek)
- Energetika
- Energia bankok
- Faszárító és -feldolgozó gépek
- Gépek műanyagok hőformázásához
- Hegesztőgépek és hegesztők
- Hőmérséklet mérés és szabályozás
- HVAC automatizálás
- Indukciós fűtés
- Ipari automatizálás
- Ipari védőfelszerelés
- Kutatási és laboratóriumi mérések
- Motorok és transzformátorok
- Nyomtatás
- Robbanásveszélyes zónák alkatrészei (EX)
- Tápegységek (UPS) és egyenirányító rendszerek
- Villamos és vasúti vontatás
-
Telepítés
-
-
Induktorok
-
-
Indukciós eszközök
-
-
Szolgáltatás
-
- Kapcsolat
- Zobacz wszystkie kategorie
Jakie są główne źródła zakłóceń elektromagnetycznych i jak je kontrolować?

Wstęp
Zakłócenia elektromagnetyczne (EMC) to niepożądane zakłócenia w sygnałach elektrycznych spowodowane przez źródła zewnętrzne. W przemyśle kontrola tych zakłóceń jest kluczowa dla zapewnienia niezawodności i bezpieczeństwa urządzeń oraz systemów.
Co to są zakłócenia elektromagnetyczne?
Zakłócenia elektromagnetyczne (EMC) to zakłócenia, które mogą wpływać na działanie urządzeń elektronicznych. Mogą być one przewodzone, czyli przenoszone przez przewody, lub promieniowane, czyli przenoszone przez przestrzeń w formie fal elektromagnetycznych.
Główne źródła zakłóceń elektromagnetycznych
Naturalne źródła zakłóceń
- Wyładowania atmosferyczne: Pioruny generują potężne zakłócenia elektromagnetyczne (EMC), które mogą wpływać na szeroki zakres urządzeń.
- Aktywność słoneczna: Zjawiska takie jak burze słoneczne mogą powodować zakłócenia w systemach komunikacyjnych i nawigacyjnych.
Sztuczne źródła zakłóceń
- Urządzenia elektroniczne i elektryczne: Komputery, telewizory, a nawet oświetlenie LED mogą generować zakłócenia elektromagnetyczne (EMC).
- Silniki i napędy elektryczne: Silniki, szczególnie te o dużej mocy, mogą być źródłem silnych zakłóceń EMI.
- Systemy komunikacyjne: Transmitery radiowe, telefony komórkowe i inne urządzenia komunikacyjne generują zakłócenia elektromagnetyczne (EMC).
- Linie energetyczne i instalacje przemysłowe: Przewody wysokiego napięcia i instalacje przemysłowe mogą powodować zakłócenia elektromagnetyczne (EMC) na dużą skalę.
Wpływ zakłóceń elektromagnetycznych na urządzenia i systemy
Zakłócenia elektromagnetyczne (EMC) mogą prowadzić do różnych problemów, w tym spadku wydajności urządzeń, zagrożeń dla bezpieczeństwa i potencjalnych strat ekonomicznych. Zakłócenia EMI mogą powodować awarie urządzeń, zakłócenia w komunikacji i błędy w przetwarzaniu danych.
Metody kontroli zakłóceń elektromagnetycznych
Projektowanie urządzeń z myślą o EMC
- Ekranowanie: Stosowanie materiałów przewodzących do ochrony urządzeń przed zakłóceniami elektromagnetycznymi (EMC).
- Filtracja: Wykorzystanie filtrów EMI do redukcji zakłóceń przewodzonych.
- Uziemienie: Zapewnienie odpowiedniego uziemienia urządzeń w celu zminimalizowania zakłóceń.
Testowanie i certyfikacja zgodności z EMC
- Normy i standardy: Przestrzeganie międzynarodowych norm EMC, takich jak EN 61000.
- Procedury testowe: Regularne przeprowadzanie testów zgodności EMC w celu wykrycia i eliminacji problemów.
Techniki redukcji zakłóceń w instalacjach zgodnie z zasadami EMC
- Odpowiednie prowadzenie przewodów: Unikanie prowadzenia przewodów równolegle do siebie na długich odcinkach.
- Stosowanie ferrytów i dławików: Wykorzystanie ferrytów i dławików do tłumienia zakłóceń elektromagnetycznych (EMC).
Praktyczne przykłady i studia przypadków
Przykład 1: Kontrola zakłóceń w przemyśle motoryzacyjnym
Zastosowanie ekranowania w pojazdach w celu ochrony systemów elektronicznych.
Przykład 2: Zastosowanie technik EMC w urządzeniach medycznych
Stosowanie zaawansowanych filtrów EMI w sprzęcie medycznym, aby zapewnić jego niezawodność i dokładność.
Przykład 3: Minimalizacja zakłóceń w systemach telekomunikacyjnych
Wykorzystanie technologii tłumienia zakłóceń w celu zapewnienia stabilnej i niezawodnej komunikacji.
Przyszłość kontroli zakłóceń elektromagnetycznych zgodnie z zasadami EMC
Rozwój technologii, takich jak 5G i IoT, wprowadza nowe wyzwania związane z kontrolą zakłóceń elektromagnetycznych (EMC). Innowacyjne metody i narzędzia, takie jak zaawansowane techniki filtrowania i ekranowania, będą niezbędne do skutecznego zarządzania zakłóceniami w przyszłości.
Podsumowanie
Kontrola zakłóceń elektromagnetycznych (EMC) jest kluczowa dla zapewnienia niezawodności i bezpieczeństwa urządzeń oraz systemów. Inwestowanie w odpowiednie metody projektowania, testowania i redukcji zakłóceń przynosi korzyści w postaci wyższej jakości produktów, mniejszych kosztów napraw i większego zadowolenia klientów. Przyszłość kontroli zakłóceń elektromagnetycznych (EMC) to ciągłe doskonalenie i adaptacja do nowych technologii i wyzwań.
Related posts


Leave a comment