Musisz być zalogowany/a
-
WróćX
-
Alkatrészek
-
-
Kategória
-
Félvezetők
- Diódák
- Tirisztorok
-
Elektromosan szigetelt modulok
- VISHAY (IR) elektromosan szigetelt modulok
- INFINEON (EUPEC) elektro-szigetelt modulok
- A Semikron elektromosan szigetelt moduljai
- POWEREX elektroszigetelt modulok
- IXYS elektromosan szigetelt modulok
- Elektro-szigetelt modulok a POSEICO-tól
- Az ABB elektromosan szigetelt moduljai
- Elektro-szigetelt modulok a TECHSEM-től
- Przejdź do podkategorii
- Híd egyenirányítók
-
Tranzisztorok
- GeneSiC tranzisztorok
- Mitsubishi SiC MOSFET modulok
- STARPOWER SiC MOSFET modulok
- ABB SiC MOSFET modulok
- IGBT modulok a MITSUBISHI-tól
- MITSUBISHI tranzisztor modulok
- MITSUBISHI MOSFET modulok
- ABB tranzisztor modulok
- IGBT modulok a POWEREX-től
- IGBT modulok – az INFINEON-tól (EUPEC)
- Szilícium-karbid félvezető elemek
- Przejdź do podkategorii
- Drivers
- Tápblokkok
- Przejdź do podkategorii
- LEM áram- és feszültségátalakítók
-
Passzív alkatrészek (kondenzátorok, ellenállások, biztosítékok, szűrők)
- Ellenállások
-
Biztosítékok
- Miniatűr biztosítékok ABC és AGC sorozatú elektronikus rendszerekhez
- Gyors működésű cső alakú biztosítékok
- Késleltetett lapkák GL/GG és AM karakterisztikával
- Ultragyors biztosítékok
- Brit és amerikai szabványos gyors működésű biztosítékok
- Gyors működésű európai szabványú biztosítékok
- Vontatási biztosítékok
- Nagyfeszültségű biztosítékok
- Przejdź do podkategorii
-
Kondenzátorok
- Kondenzátorok motorokhoz
- Elektrolit kondenzátorok
- Jégfilm kondenzátorok
- Teljesítménykondenzátorok
- Kondenzátorok egyenáramú áramkörökhöz
- Teljesítménykompenzációs kondenzátorok
- Nagyfeszültségű kondenzátorok
- Kondenzátorok indukciós fűtéshez
- Impulzuskondenzátorok
- DC LINK kondenzátorok
- Kondenzátorok AC/DC áramkörökhöz
- Przejdź do podkategorii
- Interferencia szűrők
- Szuperkondenzátorok
- Túlfeszültség elleni védelem
- TEMPEST Felfedő emissziós szűrők
- Przejdź do podkategorii
-
Relék és kontaktorok
- Relék és kontaktorok elmélete
- AC háromfázisú félvezető relék
- DC szilárdtest relék
- Szabályozók, vezérlőrendszerek és tartozékok
- Lágyindítás és irányváltó kontaktorok
- Elektromechanikus relék
- Kontaktorok
- Forgókapcsolók
-
Egyfázisú AC szilárdtest relék
- Egyfázisú váltakozó áramú szilárdtestrelék, 1. sorozat | D2425 | D2450
- Egyfázisú AC szilárdtest relék CWA és CWD sorozat
- Egyfázisú AC szilárdtest relék CMRA és CMRD sorozat
- Egyfázisú AC félvezető relék PS sorozat
- AC szilárdtest relék kettős és négyes sorozatú D24 D, TD24 Q, H12D48 D
- GN sorozatú egyfázisú szilárdtest relék
- Egyfázisú AC szilárdtest relék CKR sorozat
- Egyfázisú AC DIN sínes relék ERDA és ERAA SERIES
- Egyfázisú váltakozó áramú relék 150A áramerősséghez
- Kettős szilárdtest relék DIN sínes hűtőbordával integrálva
- Przejdź do podkategorii
- AC egyfázisú nyomtatható félvezető relék
- Interfész relék
- Przejdź do podkategorii
- Magok és egyéb induktív alkatrészek
- Radiátorok, Varisztorok, Hővédelem
- Rajongók
- Klíma, Kapcsolószekrény tartozékok, Hűtők
-
Akkumulátorok, töltők, puffer tápegységek és átalakítók
- Akkumulátorok, töltők - elméleti leírás
- Lítium-ion akkumulátorok. Egyedi akkumulátorok. Akkumulátorkezelő rendszer (BMS)
- Elemek
- Akkumulátortöltők és tartozékok
- UPS és puffer tápegységek
- Átalakítók és tartozékok napelemekhez
- Energiatárolás
- Hidrogén üzemanyagcellák
- Lítium-ion cellák
- Przejdź do podkategorii
- Automatizálás
-
Kábelek, Litz vezetékek, vezetékek, rugalmas csatlakozások
- Vezetékek
- Kábeltömszelencék és -hüvelyek
- Arcok
-
Kábelek speciális alkalmazásokhoz
- Hosszabbító és kiegyenlítő kábelek
- Hőelem kábelek
- Csatlakozó kábelek PT érzékelőkhöz
- Többeres kábelek hőm. -60°C és +1400°C között
- SILICOUL középfeszültségű kábelek
- Gyújtókábelek
- Fűtőkábelek
- Egyeres kábelek hőm. -60°C és +450°C között
- Vasúti vezetékek
- Fűtőkábelek pl
- Kábelek a védelmi ipar számára
- Przejdź do podkategorii
- pólók
-
Zsinór
- Lapos zsinór
- Kerek fonatok
- Nagyon rugalmas fonat - lapos
- Nagyon rugalmas zsinór - kerek
- Hengeres rézfonatok
- Réz hengeres fonatok és borítások
- Rugalmas földelő hevederek
- Horganyzott és rozsdamentes acélból készült hengeres fonatok
- PVC szigetelt rézfonatok - 85 fokos hőmérsékletig
- Lapos alumínium fonatok
- Csatlakozókészlet - zsinórok és csövek
- Przejdź do podkategorii
- Vontatási berendezések
- Kábelsaruk
- Szigetelt rugalmas sínek
- Többrétegű rugalmas sínek
- Kábelkezelő rendszerek
- Przejdź do podkategorii
- Az összes kategória megtekintése
-
Félvezetők
-
-
- Szállítók
-
Alkalmazások
- Bányászat, kohászat és öntöde
- Berendezések elosztó- és kapcsolószekrényekhez
- CNC gépek
- DC és AC hajtások (inverterek)
- Energetika
- Energia bankok
- Faszárító és -feldolgozó gépek
- Gépek műanyagok hőformázásához
- Hegesztőgépek és hegesztők
- Hőmérséklet mérés és szabályozás
- HVAC automatizálás
- Indukciós fűtés
- Ipari automatizálás
- Ipari védőfelszerelés
- Kutatási és laboratóriumi mérések
- Motorok és transzformátorok
- Nyomtatás
- Robbanásveszélyes zónák alkatrészei (EX)
- Tápegységek (UPS) és egyenirányító rendszerek
- Villamos és vasúti vontatás
-
Telepítés
-
-
Induktorok
-
-
Indukciós eszközök
-
-
https://www.dacpol.eu/pl/naprawy-i-modernizacje
-
-
Szolgáltatás
-
- Kapcsolat
- Zobacz wszystkie kategorie
Kondensatory, budowa i zasada działania

Kondensator to urządzenie, które występuje w każdym nawet najmniejszym układnie elektronicznym. Zapotrzebowanie na kondensatory jest bardzo duże, dlatego produkuje się je w bilionach sztuk rocznie na całym świecie.
Co to są kondensatory?
Kondensator jest niewielkim urządzeniem, które zostało skonstruowane w 1745 roku w laboratorium Uniwersytetu w Lejdzie w Holandii. Są trzy grupy elementów biernych (pasywnych) – kondensatory, rezystory i cewki. Ze względu na swoją funkcję kondensatory to elementy, które są używane w każdym najmniejszym i najprostszym układzie elektronicznym. Kondensator jest zatem elementem elektrycznym, który przechowuje ładunek elektryczny i działa jak mały akumulator gromadzący energię na zapas, dzięki czemu dobrze radzi sobie w roli filtra zasilania. Jest również urządzeniem pasywnym do kompensacji mocy biernej indukcyjnej.
Podział kondensatorów:
Kondensatory można podzielić ze względu na wiele różnych parametrów i właściwości. Oprócz kształtu lub materiału z jakiego zostały wykonane, istotny jest obszar zastosowania tych urządzeń.
Podział ze względu na budowę / kondensator:
- Płaski
- Kulisty
- Walcowy
Podział ze względu na zastosowanie / kondensator:
- Ceramiczny
- Elektrolityczny
- Superkondensator
- Nastawny
- Foliowy
- Polipropylenowy
- Poliestrowy
Budowa kondensatora
Budowa kondensatora jest bardzo prosta choć różni się nieco w zależności od zastosowanego do budowy materiału. Na konstrukcję składają się dwie okładki (płaszczyzny przewodnika najczęściej z metalu), które są oddzielone od siebie cieniutką warstwą izolatora (dielektryka).
I tak dla kondensatora foliowego będą to dwa długie, cienkie paski z folii metalowej, które są przedzielone takim samym paskiem folii. Do ciasno zwiniętych i upakowanych elementów są doprowadzone druciki (wyprowadzenia). Produkt finalny powstaje po zalaniu całości żywicą.
Budowa kondensatorów elektrolitycznych wygląda nieco inaczej. Izolatorem w tym przypadku jest cienka warstwa tlenku umieszczona na powierzchni jednej z okładek. Drugą okładką i zarazem połączeniem staje się wtedy elektrolit, którym pokryty jest tlenek. Dzięki niezwykle małej grubości tlenku i dużej powierzchni okładek kondensatory te cechują się bardzo wysoką pojemnością.
Pojemność kondensatora
Wielkością przypisaną do kondensatorów jest pojemność ponieważ prąd nie przepływa przez urządzenie. Im więcej ładunku może zgromadzić się na płaszczyznach kondensatora tym większą ma on pojemność. Kondensator jest naładowany, gdy ładunek zgromadzony na okładkach na nich pozostaje.
Pojemność kondensatora wyrażamy w faradach (F). Większość tych urządzeń ma zdecydowanie mniejszą pojemność, która wyrażana jest w częściach jednostki podstawowej takich jak pikofarady (pF) lub nanofarady (nF). Pojemność kondensatora (C) możemy wyliczyć wzorem, gdy mamy podaną powierzchnię okładek (S) i odległość okładek (d).
Zasada działania kondensatora
Kondensator ma gromadzić ładunek elektryczny o tej samej wartości, ale przeciwnym potencjale. Ładunek w kondensatorze zaczyna się gromadzić, gdy na elektrodach podpiętych do okładek zostanie podpięte źródło zasilania. Po odłączeniu zasilania ładunek nie znika, a pozostaje wewnątrz urządzenia dzięki przyciąganiu elektrostatycznemu.
Symbole kondensatorów - Przykłady
Symbol kondensatora w schematach elektrycznych to zwyczajowo dwie pionowe, równoległe kreski w różnych wariacjach zależnych od kondensatorów, który reprezentują. Poniżej kilka przykładowych symboli.
Jak połączyć kondensatory?
Kondensatory można ze sobą łączyć. Po połączeniu ich otrzymamy pojemność wypadkową, którą bardzo łatwo określić znając pojemności składowe.
Wyróżniamy dwa podstawowe sposoby na połączenie kondensatorów:
- Równoległe
- Szeregowe
W połączeniu równoległym kondensatory z każdej strony połączone są ze sobą okładkami. Oznacza to, że potencjał połączonych ze sobą okładkami kondensatorów jest jednakowy po każdej ze stron, dzięki czemu na każdym z kondensatorów różnica potencjałów jest taka sama. Pojemność całkowita kondensatorów w połączeniu równoległym jest sumą ich pojemności.
W połączeniu szeregowym kondensatory są naładowane takim samym ładunkiem ponieważ ładunek dodatni doprowadzony do pierwszego kondensatora wytwarza pole przyciągające ten sam ładunek przeciwnego znaku. Z kolei po przeciwnej stronie ładunek minusowy dopływa z zewnątrz. Pojemność całkowita kondensatorów w połączeniu szeregowym jest sumą odwrotności pojemności każdego kondensatora.
Rozładowywanie kondensatora
Proces rozładowywania kondensatora zależy od jego rodzaju i pojemności. Im większa pojemność, tym większe niebezpieczeństwo przy nieodpowiednim procesie rozładowywania, które może zakończyć się nawet wybuchem.
Do rozładowania kondensatora potrzebne jest przyłączenie do obciążenia rezystancyjnego, dzięki któremu zgromadzone ładunki zostaną przeniesione z naszego kondensatora. Obciążeniem może być na przykład żarówka lub rezystor. Czas rozładowywania zależeć będzie od pojemności naszego urządzenia, a także elementu obciążeniowego, który musi być odpowiednio dobrany do kondensatora. Zbyt duży rezystor to ryzyko spalenia kondensatora, a zbyt mały to ryzyko zniszczenia rezystora.
Zachęcamy, również do przeczytania artykułu: Co to jest kondensator elektrolityczny?
Related products
Related posts


Leave a comment